Закон всемирного тяготения формула Ньютона

Закон всемирного тяготения формула Ньютона

Аристотель утверждал, что массивные предметы падают на землю быстрее лёгких.

Галилей в начале XVII века показал, что все предметы падают «одинаково». И примерно в то же время Кеплер задумывался, что заставляет планеты двигаться по своим орбитам. Быть может, это магнетизм? Исаак Ньютон свел все эти движения к действию единой силы, называемой гравитацией, которая подчиняется простым универсальным законам.

Галилей экспериментально показал, что путь, пройденный телом, падающим под действием гравитации, пропорционален квадрату времени падения: шар, падающий в течение двух секунд, пройдет вчетверо больший путь, чем такой же предмет в течение одной секунды. Также Галилей показал, что скорость прямо пропорциональна времени падения, и вывел отсюда, что пушечное ядро летит по параболической траектории — одному из видов конических сечений, как и эллипсы, по которым, согласно Кеплеру, движутся планеты. Но откуда эта связь?

гравитацияНьютон предположил, что Луну следует рассматривать как снаряд, который движется по искривленной траектории, поскольку на него действует земное тяготение. Поверхность Земли тоже искривлена, так что при достаточно быстром движении снаряда его искривленная траектория будет следовать за кривизной Земли, и он станет «падать» вокруг планеты. Если увеличить скорость снаряда, его траектория вокруг Земли вытянется в эллипс.

Когда в середине 1660-х годов Кембриджский университет закрылся на время Великой эпидемии чумы, Ньютон вернулся в семейную усадьбу и там сформулировал свой закон тяготения, хотя и держал его потом в тайне еще 20 лет. (Историю об упавшем яблоке никто не слыхал, пока восьмидесятилетний Ньютон не рассказал эту байку после большого званого ужина.)

Он предположил, что все предметы во Вселенной порождают гравитационную силу, притягивающую другие объекты (подобно тому, как яблоко притягивается к Земле), и эта самая сила гравитации определяет траектории, по которым движутся в космосе звезды, планеты и другие небесные тела.

Яблоко Ньютона

Яблоко Ньютона

На склоне своих дней Исаак Ньютон рассказал, как это произошло: он гулял по яблоневому саду в поместье своих родителей и вдруг увидел луну в дневном небе. И тут же на его глазах с ветки оторвалось и упало на землю яблоко. Поскольку Ньютон в это самое время работал над законами движения, он уже знал, что яблоко упало под воздействием гравитационного поля Земли. Знал он и о том, что Луна не просто висит в небе, а вращается по орбите вокруг Земли, и, следовательно, на нее воздействует какая-то сила, которая удерживает ее от того, чтобы сорваться с орбиты и улететь по прямой прочь, в открытый космос. Тут ему и пришло в голову, что, возможно, это одна и та же сила заставляет и яблоко падать на землю, и Луну оставаться на околоземной орбите.

 

 

Закон обратных квадратов

Ньютон сумел рассчитать величину ускорения Луны под влиянием земной гравитации и нашел, что она в тысячи раз меньше, чем ускорение предметов (того же яблока) вблизи Земли. Как такое может быть, если они движутся под действием одной и той же силы?

Объяснение Ньютона состояло в том, что сила тяготения ослабевает с расстоянием. Объект на поверхности Земли в 60 раз ближе к центру планеты, чем Луна. Притяжение на орбите Луны составляет 1/3600, или 1/602, от того, что действует на яблоко. Таким образом, сила притяжения между двумя объектами — будь это Земля и яблоко, Земля и Луна или Солнце и комета — обратно пропорциональна квадрату разделяющего их расстояния. Удвойте расстояние, и сила уменьшится вчетверо, утройте его — сила станет меньше в девять раз и т. д. Сила также зависит от масс объектов — чем больше масса, тем сильнее гравитация.

Закон всемирного тяготения можно записать в виде формулы:
F = G(Mm/r2).

Где: сила гравитации равна произведению большей массы M и меньшей массы m, деленному на квадрат расстояния между ними r2 и помноженному на гравитационную постоянную, обозначаемую заглавной буквой G (строчная g обозначает вызванное тяготением ускорение).

Эта постоянная определяет притяжение между любыми двумя массами в любой точке Вселенной. В 1789 году ее использовали для вычисления массы Земли (6·1024 кг). Законы Ньютона замечательно предсказывают силы и движения в системе из двух объектов. Но при добавлении третьего всё значительно усложняется и приводит (спустя 300 лет) к математике хаоса.


Саша Митрахович 20.02.2016 11:04

Поделиться с друзьями:

Похожие статьи:

Коментарии (0)

Каптча